MASS TRANSFER ACCOMPANIED BY A CHEMICAL
REACTION TAKING PLACE RAPIDLY INSIDE A
MOVING SPHERICAL DROP
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The article deals with the problem of convective mass exchange between a liquid drop and a
continuous medium, accompanied by an irreversible chemical reaction of second order at
high Pe and K values. A numerical solution of the transfer equations is given. The limits of
applicability of the resulting solutions are defined.

Mass exchange within a moving spherical drop in the presence of an irreversible second-order
chemical reaction under conditions such that the resistance to the transfer was concentrated in the volume
of the dispersed phase was dealt with in {1, 2], Calculations were carried out for Re < 1 for finite values
of Pe and of the reaction-rate constant, )

In the present article we shall investigate the transfer process again for Re < 1 but for comparable
phase resistances and the limiting case Pe — « and K — », Without loss of generality, we shall consider
the case which occurs most frequently in practice, namely, the case in which at the initial instant of time
the concentration of the chemosorbent inside the drop, C,(, is constant throughout its volume. The con-
centration of the extracting agent in the continuous phase, y;, is taken to be constant with respect to the
height of the column and independent of time; this will be true for the condition Ug(Cy; + Cy¢) < Ucyy. It
is assumed, as usual, that there is phase equilibrium at the surface of the drop.

For small values of the velocity constant K the reaction between the extracting agent and the chemo-
sorbent takes place throughout the volume of the drop. As Kincreases, the thickness of the reaction
zone is reduced, and for sufficiently large values of K this thickness is much smaller than the radius of
the drop. As K — «, the thickness of the reaction zone approaches zero, and the zone itself may be ap-
proximately replaced by a surface front. As time increases, the reaction front moves from the surface
to the interior of the drop, separating the volume of the drop into two regions, with the extracting agent
in one region and the chemosorbent in the other, Thus, the problem of mass transfer in a moving spheri-
cal drop with a rapid chemical reaction reduces to the solution of a set of equations of convective diffusion
for the extracting agent and the chemosorbent, which are related to each other by conditions of conjugacy
at the front of the chemical reaction,

For sufficiently large values of Pe, when Re < 1, the equations of convective diffusion for the ex-
tracting agent and the chemosorbent can be approximately described by the equations of Kronig and Brink

[3, 4]:
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where x = 4r’(1-r?) sin®6; q(x), p(x) are defined in [3] as functions of elliptic integrals.
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Equation (1) was obtained in [3] on the assumption that the concentrations along a streamline are con-
stant; this assumption is satisfied as Pe — «. In this case the equation of convective diffusion reduces to
an equation of nonstationary molecular diffusion (1) in a direction perpendicular to the streamlines. As
K — =, the condifion of constant extracting-agent and chemosorbent concentrations along the streamlines
is satisfied at surfaces arbitrarily close to the reaction front. Therefore the reaction front also coincides
with the streamlines. At the reaction front the concentrations of the reactants are equal to zero, and their
flow rates are equal in magnitude and opposite in direction:

(Cl)x=l = (C'z)x=l = 01 (3)

oC, ) =—-n( oC, )
( 0% [yt ox x=1, 4

where [ is the moving position of the reaction front. In the case where the extracting agent and the chemo-
sorbent have different valences, the concentration of the chemosorbent should be multiplied by a stoichio-
metric coefficient.

On the surface of the drop the boundary condition for the extracting agent has the same form as in the
case of mass transfer not complicated by a chemical reaction, for comparable phase resistances and con-
stant extracting-agent concentration in the continuous phase (5, 61:

) 2 (C)en—1 5
( - )x_o o (G0 — 1 ®)
where
_ Dy
p= Kd "

Within the drop the concentrations of the reactants are bounded.
The initial conditions for this case have the form
C11'c=0 = 0, C211:==0 = I. (6)

For small values of 7 the reaction takes place at the surface of the drop, and the boundary conditions
(3)-(5) are not satisfied. In the present case the concentration of the extracting agent at the surface of the
drop is zero, and instead of the boundary conditions (4), (5), we have

6(]2) __ 3 -
( 0x [0 32(3mn' (

For 0< 7 = 7; we solve Eq. (2} for a boundary condition of the second kind, (7). The time 7, is determined
from the condition Cy(1y)Ix=y = 0. For 7 > 14 we solve Eqs. (1)-(6).

For the average chemosorbent concentration 62, when T = 7, we can obtain an analytic expression:

Co=1—2= 2 (8)

Starting at time 7 = 75, corresponding to the value 62 = 0 (the position of the reaction front is determined
by the value x = 1), the process of mass transfer is described by Eq. (1). The boundary conditions for C,
remain the same as before, and the initial condition is determined by the value of C; obtained when we
solve the problem in the interval 0 < 17 < 7, at time 7 = 7,.

The solution of the problem was carried out on a BESM-4 computer by the finite-difference method.
The difference scheme for Egs. (1), (2) was written in the form

2 e | uba— . hi) ul—uly | _a(x) wl—ul”
Thy+ Ry [P,-('\,- 2 ) higy | e 2 h; - 16 ’ @

where hj = Xj—Xj-1, Xj is a point of subdivision of the interval [0, 1],

{ —C, 0L x K,
U=

10
e l<x< 1, (10

*In [6], pp. 115 and 299-306 the notation 8 = D;¥/KqR is incorrectly used instead of g = Dyy/Kcd.
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Fig. 1. Q/Qq as a function of 7: a) for g = 0.0005 (solid

curves: m = 10; n =1, 5, 10; dashed curves: m=1; n = 0.5,
1, 5) and b) for g8 = 0.005 (solid curves: m = 10; n = 0.5, 5;
dashed curves: m = 2; n = 0.5, 5; dot-and-dash curves: m
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26 >Y R ﬂp(x,-~'— S )‘—ulﬁf—‘”—l if uland ufy differ in sign. -
24 /7’ By ut and u” we denote the positive and negative values, re-
;\/ L/’\\ spectively, of the function u at the point (x;, T§) or Ki+q, Tj).
02 ARdR N The scheme is obviously nonlinear. To solve it, we use the
L 4 b usual method of successive approx1mat1ons from the value of u1
41 |-t ' we construct the coefficients Pj (x1 +hj44/2) on layer 7§, afterwhich
g ) the resulting linear schemeis solved by the trial-and-error method,
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Fig. 2. Variation of Q/Qp (solid so that we find the values uJ l); using these, we construct p(l)(x
. Do m

curves) and A/Ay (dashed curves) +h;11/2), and so on, until the values u] (k) for two successive itera-
as functions of 7 for g = 0.05; tions are found fo be sufficiently close to each other. It should
curves 1, 2: n =0.5, 5; m =10; also be noted that the system of linear algebraic equations obtained
curves 3, 4: 0.5and 1, respec- at each iteration includes a number of equations equal to the num-
tively; curves 5, 6: 5and 1. ber of unknowns, which is obtained by writing the scheme at the

node x =1 (for more details on such approximations, see [7, 8]).

In the calculation process we determined 74, I, the concentration values for the reactants averaged
over the volume, and their derivatives. The calculations were carried out for the following values of the
parameters: m=1, 2, 10; n=0.1, 0.5, 1, 5, 10; B8 =0.0005, 0.005, 0.05.

For the calculated values of C; and C, we found the average value of the flow rate for the extracting

agent

Q= Ci+m(1—Cyl (12)
and its ratio to the maximum flow rate Qm, = ndecyo,‘

L 25 €.+ m(1—C, (13)

Q
as well as the value A/A,, which characterizes the ratio of the extracting agent absorbed by the drop to
the maximum possible absorption in the case of chemosorption,

A — El—z“m(l_“éz)
A, I+m :

(14
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Some examples of numerical calculations are shown in Figs. 1 and 2 for Q/Qy, and A/Ay, as functions
of T and of the parameters of the problem. From the value of the parameter g we can judge which of the
phases limits the transfer process [4]. It should be noted that for any value of 8 an increase in the param-
eters m and n brings an increase in the rate of transport of the chemosorbent to the surface of the drop,
and, in addition, an increase in m leads to an increase in chemical capacity, which leads to an increase in
the value of time 7; that determines the initial time interval in which the reaction takes place at the sur-
face of the drop.

In Fig. 1la we show how Q/Qp, varies with T for a limiting resistance of the dispersed phase (8
= 0,0005) and various values of the parameters m and n. As can be seen from the curve, the reaction
front for m =10, for an appreciable period of time 71 = 1073, is practically at the surface of the drop;
when m =1, it moves very rapidly to the interior, Even for very small values of T (r & 5.107% the con-
centrations of extracting agents and chemosorbent in the drop are changed considerably in relation to their
original values, and the value of the mass flow rate is much less than the maximum value attained for
T=0.

In Fig. 1b the transfer process is considered for comparable phase resistances (8 = 0.005), and in
Fig. 2 we show how Q/Qm and A/Ay, vary with 7 for the case in which the resistance to transfer is con-
centrated, to a significant extent, in the continuous phase (8 = 0.05). From the curves in Fig. 2 it can be
seen that during most of the time the reactions take place at the surface of the drop (r; is very large). The
value of 74 is most significantly influenced by the parameter m. As m increases, the influence of the
parameter n on the nature of the process is very much reduced. Thus, when m =10, the curves for n = 0.5
and n = 5 coincide,

Let us estimate what will be the values of the parameters Pe, K, and Re for which the results ob-
tained will be usable. The applicability of the solutions with respect to Pe is due to the possibility of using
the Kronig—Brink equations [3] for describing the mechanism of transfer inside the drop. As was shown
in [4], these equations can be used for Pe' > 100.

Now let us estimate the value of the reaction-rate constant for which it may be assumed that the
thickness of the reaction front is much less than the radius of the drop. We define the characteristic time
of the chemical reaction as the time it takes for the concentration of extracting agent at m = 1 to decrease
by a factor of e. We assume that when t = 0, C; = Cy = Cy, throughout the volume of the drop. This is the
characteristic time ty # (e~1)/kCyy. The characteristic time of diffusion in the presence of liquid circula-
tion in the drop can be found from the Kronig—Brink solution. A decrease by a factor of e in the concen-
tration of the extracting agent corresponds to a degree of extraction of Ay ~ 0.63, which is achieved for
T = 0,022 (see Table 1 on p. 299 of [6]). Consequently, tq = 0.022R2/D1, and from the condition ty « tg
we find that K > 100.

The solution given above was obtained for Re < 1. However, as was shown in [4], for spherical
drops with u < 2, in the description of the mechanism of transfer within the drop Eq. (1) (and consequently
the solution obtained here for mass exchange with a chemical reaction) can be used for Re ~ 100,

NOTATION
r is the radial coordinate;
0 is the polar angle;
R is the radius of the drop;
u is the velocity of the steady-state motion of the drop;
P is the density;
¢ = pd/te is the ratio of the dynamic viscosities of the dispersed and continuous phases;
D is the diffusion coefficient;
Cygand Cy, are the initial concentrations of extractingagent and chemosorbent, respec-
tively;
C; =Cy/Cypand Cy = Cy/Cyy are the dimensionless coordinates;
k is the constant for the rate of the second-order chemical reaction;
K = kR’Cpy/Dy;
m = Cy/Cyps
n = Dy/Dy;

B = Dyp/ked, where k¢ is the average coefficient of mass transfer for the continuous phase;
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d

is the diameter of the drop;

P is the distribution coefficient;
Re =udpe/lice is the Reynolds number;

T = Dyt/R? is the Fourier number;

Pe =ud/D, is the Peclet number;

Pe'= Pe/4(1 +pu).

Subscripts

1

2
d
c

[N

denotes the extracting agent;
denotes the chemosorbent;

denotes the dispersed phase;
denotes the continuous phase.
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